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1 Introduction

Symmetry principles play an essential role in constraining the spectrum of quantum sys-

tems. In particular, in quantum field theory, massless particles are often understood as

a consequence of symmetry. For spin 0 and spin 1/2 particles, supersymmetry and chiral

symmetry are the relevant principles. For particles of spin 1 and higher, gauge symmetry

is the relevant invariance. However gauge symmetry is not an ordinary symmetry but a

redundancy in the parametrization of the dynamical variables. In the simplest situations

this redundancy ensures the absence of the additional physical polarizations that are nec-

essary to endow with mass particles with spin ≥ 1. This is the case of QED in 4D. In

more general situations the gauge symmetry is not enough to forbid degrees of freedom

acting as the extra polarizations, and then mass generation follows. In this case the gauge

theory is said to be in the Higgs phase, and the additional polarizations are associated

to Nambu-Goldstone (NG) bosons non-linearly realizing the gauge symmetry. In weakly

coupled gauge theories the NG-bosons are elementary states. An example of that is given

by the Standard Model with an elementary Higgs field. On the other hand if the interac-

tion is sufficiently strong the role of NG-bosons can be played by composite states. This

situation is realized for instance in technicolor models in 4D. Heuristically, a strong inter-

action among elementary constituents is needed in order to produce a NG pole out of a

perturbative continuum spectrum in the current-current correlator.

The purpose of this paper is to illustrate how a Higgs mechanism involving a NG-boson

composed by two elementary particles can arise at the perturbative level in gauge theories

on AdS4. The geometry of AdS4 is crucial for this phenomenon to happen. On one side,

in AdS4 energy levels are discrete much like in finite volume (although AdS4 has infinite

volume), and therefore multi-particles states have a discrete mass spectrum. Moreover,

since null geodesics reach the boundary of AdS4 in finite time, bulk physics is crucially

affected by boundary conditions. Indicating by D(E, s) the one particle representations
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of the AdS algebra [1] whose ground state has energy E and spin s, our basic point is

the following. Measuring energies in units of the inverse AdS radius, a massless fermion

ψ corresponds to D(3
2 ,

1
2). The two particle Hilbert space ψ ⊗ ψ then obviously contains

the scalar representation D(3, 0). This corresponds to a derivatively coupled 4D scalar, a

candidate NG-boson. Whether and how this scalar shifts under a gauge symmetry and thus

causes the associated vector field to acquire a mass depends on the boundary conditions.

Our basic remark is that charge breaking boundary conditions are compatible with AdS

isometries. When charge breaking boundary conditions are imposed, the two fermion

composite state is eaten by the bulk vector giving rise to a massive spin 1 multiplet

D (2, 1) ⊕D (3, 0) −→ D

(

3 +
√

1 + 4m2

2
, 1

)

(1.1)

As the mass is due to the mixing between 1- and 2-particle states, it will arise by considering

the vector self-energy at 1-loop: m2 ∼ α
4π . A similar phenomenon can also arise for

conformally coupled bulk scalars φ, that, depending on boundary conditions [2, 3], can be

quantized as either D(1, 0) or D(2, 0). Again, in general we shall have D(3, 0) ⊂ φ ⊗ φ.

In the case of scalars there is always the option to choose charge preserving boundary

conditions. On the contrary, for chiral gauge theories the boundary necessarily breaks

the gauge group to a subgroup of the maximal vector subgroup. So, for instance, in the

Standard Model on AdS4 even in the absence of an elementary Higgs field, the electro-weak

vector bosons have a small mass.

This paper is organized as follows. In section 2 we introduce general boundary condi-

tions for massless fermions and compute the 1-loop contribution to the vector boson mass.

Furthermore we discuss the result for QED and for chiral gauge theories and illustrate

how things change for massive fermions. In section 3 we include scalars and extend our

result to supersymmetric gauge theories. We check that the resulting vector and gaugino

masses are consistent with the Super-AdS algebra. In particular the so called ‘anomaly

mediated’ gaugino mass is an essential contribution. Finally, in section 4 we discuss our

results comparing to the mass generation in the Schwinger model in 1+1 dimensions and

providing a holographic interpretation according to the AdS/CFT correspondence.

2 Mass generation

Let us consider a gauge theory with group G in AdS4 space coupled to n massless Weyl

fermions in a representation of G, generally reducible and anomaly free. The bulk action

reads

S =

∫

d3xdz e

[

−1

2
TrF 2 − i

2
(ψ̄iσ̄MDMψi + h.c.)

]

DM = ∂M + ωM + igAa
MTa (2.1)

where ωM is the spin connection. Working in the Poncairé patch we take eAM = L/z δA
M

and we follow all the conventions of [4]. In the massless limit the action is Weyl invariant

so that it can be rescaled (classically) to half of flat space. It turns out that, for the

– 2 –



J
H
E
P
1
2
(
2
0
0
9
)
0
2
5

computation we are interested in, we can easily bypass the complication associated to the

breaking of Weyl rescaling by the UV regulator. A similiar approach was taken in ref. [5].

We will therefore perform all the computations using flat space variables.

In AdS the presence of a boundary at z = 0 requires that boundary terms are added

to the action in order to make the variational problem well defined. These terms are in

general described by a symmetric matrix B

1

4

∫

d3xBij ψ
iψj + h.c. (2.2)

implying the following boundary conditions

ψi|z=0 = −iB∗
ijσ

3ψ̄j |z=0. (2.3)

The existence of non trivial (ψ 6= 0) solutions to the above equation requires that B is a

symmetric unitary matrix. In the massless limit the free bulk matter lagrangian has a chiral

symmetry U(n). However, since the boundary matrix B transforms under a chiral rotation

as B → UTBU , it follows that the boundary breaks the symmetry to O(n). This will

necessarily break part of the gauge symmetry unless G ⊆ O(n). The unbroken generators

of G satisfy

T ∗
aB +BTa = 0 (2.4)

i.e. they provide a real representation of the algebra. Note that such a general form of mass

matrix would not be allowed in the bulk: ‘explicit’ breaking of the gauge symmetry in the

bulk is equivalent to adding the corresponding elementary NG-bosons, in contradiction with

the goal stated in the Introduction. In AdS space, however, the fields at the boundary

are not dynamical and charge breaking conditions can be imposed. By eq. (2.3) there

is no energy-momentum flow at the boundary, thus ensuring the compatibility with the

isometries of AdS4. This property distinguishes our set up from previous literature on mass

generation on AdS4, where transparent boundary conditions were imposed, corresponding

to the presence of extra states (associated to a defect CFT) [6, 7]. In our set up only the

gauge charge flows through the boundary. Indeed it must be stressed that, for chiral gauge

theories, charge breaking at the boundary is mandatory, as the representation is complex

and only a subgroup of G can be preserved. The necessity to break chirality in AdS4 as

a consequence of the relevance of the 3D boundary was first noticed in ref. [8], but the

implications for chiral gauge theories where not investigated in that paper.

The above boundary conditions determine the fermion propagators to be

〈ψiα(X1)ψ̄jβ̇(X2)〉 =
i

2π2

(X1 −X2)Mσ
M
αβ̇

[(X1 −X2)2 + iǫ]2
δij, (2.5)

〈ψiα(X1)ψ
β
j (X2)〉 = − 1

2π2

(X1 − X̃2)M (σM σ̄3)βα

[(X1 − X̃2)2 + iǫ]2
B∗

ij. (2.6)

where X̃ = (x,−z). Eqs. (2.5) and (2.6) are naturally associated to, respectively, direct

propagation and propagation with one reflection at the boundary. The second equation
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implies the presence of a condensate in the bulk,

〈ψiψj(X)〉 =
1

8π2

B∗
ij

z3
(2.7)

which spontaneously breaks the chiral U(n) global symmetry of the bulk action to O(n).

We are now ready to compute the gauge boson mass at 1-loop. The self-energy due

to the matter action decomposes into two contributions, from direct and reflected propa-

gators.1 Let us consider first the second contribution which is not ambiguous and does

not require regularization. Defining the 1PI effective action as Γ1PI ∈
∫

1/2Aa
M (X1)

ΠMN
ab (X1,X2)ANb(X2) we have,

ΠMN
R ab(X1,X2) = −i g2κab

(

i

2π2

)2

Tr
[

σM σ̄3σQσ̄NσP σ̄3
] (X1 − X̃2)P (X1 − X̃2)Q

(X1 − X̃2)8

= −i g
2κab

2π4

[

η̃MN

(X1 − X̃2)6
− 2(X1 − X̃2)

M (X1 − X̃2)
P η̃N

P

(X1 − X̃2)8

]

(2.8)

where η̃MN = Diag(−1, 1, 1,−1) and κab = Tr[BTaB
∗T ∗

b ]. As expected ΠMN
R is transverse,

∂XM
1

ΠMN
R (X1,X2) = ∂XN

2

ΠMN
R (X1,X2) = 0, guaranteeing that the effective action is gauge

invariant in the bulk. Indeed the self-energy can be written as

ΠMN
R ab(X1,X2) = i

2

3

g2κab

(4π2)2
η̃M

P

(

∂

∂X2N

∂

∂X2P
− ηPN

�2

)

1

(X1 − X̃2)4
(2.9)

To extract the photon mass we proceed as in [5] and compute the 1-loop corrected

‘equations of motion’ associated to the 1PI effective action. We suppress the non abelian

indices as they factor out. By integrating twice by parts the 1-loop contribution to the

equations of motion, we obtain

EQMR =

∫

d4X2 ΠMN
R (X1,X2)AN (X2)

=−i2
3

g2κ

(4π2)2
η̃MP

∫

d4X2
1

(X1 − X̃2)4
∂

∂X2Q
FQP (X2)

−i2
3

g2κ

(4π2)2
η̃MP

∫

d3x2

[

ηP3
∂

∂X2Q

1

(X1−X̃2)4
AQ(X2)−

∂

∂z2

1

(X1−X̃2)4
AP (X2)

]

∣

∣

∣

z2=0

−i2
3

g2κ

(4π2)2
η̃MP

∫

d3x2

[

1

(X1 − X̃2)4
F3P (X2)

]

∣

∣

∣

z2=0
(2.10)

At leading order the contribution to the mass can be derived by evaluating the equations

of motion on massless solutions. We find it convenient to use solutions that satisfy the

gauge condition

∂M

[

AM

z2

]

= 0 (2.11)

1We will not compute the contribution from gauge loops as, first of all, it is independent of the matter

contribution and absent is abelian theories. Secondly, we could not identify any two particle state playing

the role of the NG-boson in the two vector channel.
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which corresponds, in our choice of coordinates, to the general covariant Lorentz gauge

condition DMAM = 0. For the same reasons explained in [5], we also need to impose

Hartle-Hawking boundary conditions at the horizon z = ∞ of the Poincaré patch. A

physical (not pure gauge) set of solutions of the massless equations in Lorentz gauge is

A3 = 0, Aµ = ei(pνxν+|p|z)ǫµ ǫµp
µ = 0, µ = 0, 1, 2 (2.12)

so we will compute the action of the self-energy on these functions and show it acts like

a local mass term. Notice that in the massless case the Lorentz gauge leaves one residual

gauge degree of freedom. This additional polarization is pure gauge in the massless case

but becomes the physical 3rd polarization in the massive case. We have checked that the

self energy acts like the same local mass term also on this additional polarization, for which

computations are slightly more involved.

The bulk contribution in the second line of (2.10) is zero by the tree level equations of

motion. The boundary terms give rise to a mass term. To see this, the first term in the

third line of eq. (2.10) vanishes due to ǫµp
µ = 0 while the second gives

i
2

3

g2κ

(4π2)2
∂

∂z1

∫

d3x2
1

[(x1−x2)2+z2
1 +iǫ]2

ei pνxν
2 ǫµ = −2

3

g2κ

(4π)2

[

1

z2
1

− i
|p|
z1

]

ei(pνxν
1
+|p|z1)ǫµ.

(2.13)

From the fourth line we obtain

− i
2

3

g2κ

(4π2)2

∫

d3x2
i|p|

[(x1 − x2)2 + z2
1 + iǫ]2

ei pµxµ
2 ǫµ = −2

3

g2κ

(4π)2

[

i
|p|
z1

]

ei(pνxν
1
+|p|z1)ǫµ.

(2.14)

Combining the two we see that ΠMN
R acts as a mass term,

δm2
ab|reflected =

2

3L2

g2κab

(4π)2
(2.15)

The contribution to the self-energy from the direct propagators is more subtle, as it

requires UV regulation. However its computation can be bypassed. Indeed the direct

contribution to the vector boson self-energy is proportional to Tr[TaTb], and independent

of the boundary matrix B. So we simply have

δm2
ab|direct = c

1

L2

1

(4π)2
Tr[TaTb] . (2.16)

with c a numerical coefficient. The request that the sum of reflected and direct contributions

to the vector mass vanish in the charge preserving case, BTa = −T ∗
aB, fixes c = 2/3. In

the end the total contribution to the vector mass is

m2
ab =

2

3L2

g2

(4π)2
Tr[BTaB

∗T ∗
b + TaTb] (2.17)

As a matter of fact we have also performed an explicit computation of the direct contribu-

tion to the self-energy confirming the above result. The matrix in eq. (2.17) is easily proven

to be positive semi-definite. Indeed T → B∗T ∗B ≡ TB is an orthogonal transformation

– 5 –
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with respect to the natural metric TrT1T2 ≡ 〈T1|T2〉 on the space of hermitean matrices.

Defining T = αaTa we have then

αaαbm
2
ab ∝ 〈T |TB〉 + 〈T |T 〉 ≥ 0 (2.18)

with αaαbm
2
ab = 0 occurring if and only if T = −B∗T ∗B ≡ TB . Therefore the gauge bosons

associated to the broken generators acquire positive mass2. This is the main result of our

paper.

2.1 QED

To be concrete, let us consider QED coupled to two massless Weyl fermions of opposite

charges. In this case the general boundary matrix depends on three real parameters and

can be conveniently parameterized as,

B =

(

iλ e2iφ1

√
1 − λ2 ei(φ1+φ2)

√
1 − λ2 ei(φ1+φ2) iλ e2iφ2

)

(2.19)

with 0 ≤ λ ≤ 1. From eq. (2.17) the mass of the photon is m2
γ = g2 λ2/(6π2L2) and does

not depend on φ1,2. Indeed the bulk Lagrangian of massless QED is classically invariant

under a U(1)×U(1) symmetry corresponding to electric charge and chiral symmetry. Due

to this bulk symmetry, the two phases can be eliminated by the a field redefinition that

does affect the bulk lagrangian. Note however that by adding bulk operators that break

the chiral symmetry (for instance 4 fermion interactions) the combination φ1 +φ2 becomes

observable, while φ1 − φ2 can always be set to zero by charge rotations. In the end, the

physically relevant parameters are in general 2, with the vector boson mass taking values

in a fixed range 0 ≤ m2
γL

2 ≤ g2/6π2. Notice that in the general case of many fermions

with charge matrix Q, the maximal value the vector mass can attain is proportional to

TrQ2, that is the same combination of charges that controls the 1-loop β-function.

2.2 Chiral theories

As we mentioned earlier, when the matter fields are in a complex representation of G, i.e.

the gauge theory is chiral, no boundary conditions that preserve the full gauge symmetry

can be chosen and therefore some of the gauge bosons necessarily become massive. In this

case the maximal symmetry that can be preserved is the maximal vectorial subgroup of G.

As an example let us consider an SU(5) gauge theory with fermions in the 5 + 1̄0 rep-

resentation. The maximal vector subgroup is SU(4) under which the fermions decompose

as 1⊕ 4⊕ 4̄⊕ 6. The broken generators transform in the 4⊕ 4̄⊕ 1 representation of SU(4)

and the associated gauge bosons will acquire mass. For the Standard Model the maximal

vectorial subgroup is instead SU(3) ⊗ U(1). Let us consider a quark doublet. In order the

preserve SU(3) ⊗ U(1) the boundary conditions give rise to the following condensates,

< ddc > =
3

8π2z3

< uuc > =
3

8π2z3
(2.20)

– 6 –
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The pattern of chiral symmetry breaking is identical to the one in QCD and the NG-bosons

associated to this breaking become the longitudinal components of the W,Z bosons. In

fact, as in the Standard Model, due to the unbroken SU(2) “custodial” symmetry rotating

up and down quarks, we have m2
W/m

2
Z = cos2 θW with θW the Weinberg angle. The same

conclusion holds in the lepton sector if there exists a right-handed neutrino. Otherwise there

will be necessarily a ν2 condensate which breaks custodial symmetry (and lepton number)

and modifies the previous ratio. Notice, finally, that in the SU(5) and SU(3)×SU(2)×U(1)

examples the vector boson mass at the point of maximal symmetry is fixed.

2.3 Bulk mass

For vector theories we can add a bulk mass for the fermions. In this case the boundary

conditions consistent with AdS4 invariance are more restricted: the bulk mass gives a

discrete set of possibilities for the scaling of the solution at the boundary. This follows

from the fact that the boundary matrix and the bulk mass matrix must be simultaneously

diagonalizable. As discussed in [5], for a Weyl spinor of mass mL ≥ 1/2 (we assume

without loss of generality m to be real and positive) the bulk action already implies the

boundary condition uniquely. The resulting one particle Hilbert space corresponds to the

D(3
2 +mL, 1

2) representation. In the case of QED this unique boundary condition is, not

surprisingly charge preserving, implying a massless photon. As a quick check of that, notice

that the tensor productD(3
2+mL, 1

2)⊗D(3
2+mL, 1

2 ) does not contain the NG representation

D(3, 0). In the region mL < 1/2, analogously to the scalar double quantization [2, 3], two

inequivalent boundary conditions are allowed for each Weyl fermion. In the presence of

multiple Weyl fermions with the same mass, the above discrete set of boundary conditions

can be folded by a rotation among the fields of equal mass. If one performs this exercise

for QED coupled to a massive Dirac fermion, one finds 3 inequivalent possibilities for the

matrix B describing the boundary condition

B± = ±
(

0 1

1 0

)

B0 =

(

eiφ 0

0 e−iφ

)

. (2.21)

The choices B+ and B− preserve charge and correspond to a Dirac fermion in respectively

D(3
2 +mL, 1

2) and D(3
2 −mL, 1

2 ). The choice B0 breaks charge maximally. The one particle

Hilbert space corresponds to a direct sum of Majorana spinorsD(3
2 +mL, 1

2)⊕D(3
2−mL, 1

2 ).

In this case, as expected, a Goldstone multiplet appears in the two particle Hilbert space.

The angle φ has no physical consequences as it can be eliminated by a gauge rotation. Not

surprisingly, since chiral symmetry is broken by the bulk mass, the freedom in φ1 + φ2

has disappeared with respect to eq. (2.19). But, less trivially, the parameter λ controlling

charge breaking is now ‘quantized’ to be either 0 or 1. Contrary to the massless case, the

action is not Weyl invariant so that flat space formulae cannot be used to compute the

vector mass and a genuine AdS4 computation is required. We of course expect the gauge

boson to be massive also in this case with a mass that goes to zero as mL→ 1/2.

– 7 –
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3 Supersymmetry

The previous results can be easily extended to the supersymmetric version of the theory. Su-

persymmetric QED in AdS4 with charge preserving boundary conditions was studied in [5]

so we will consider this case. In that paper it was shown that an ultraviolet counter-term,

the anomaly mediated gaugino mass [9], was required to cancel an infrared contribution

associated to the R−symmetry breaking from the boundary in order to leave the gaugino

massless as demanded by supersymmetry.

In general, supersymmetry also allows for charge breaking boundary conditions with

the scalars in a chiral multiplet aligned with the fermions

φi|z=0 = B∗
ijφ

j∗|z=0. (3.1)

For zero mass term in the superpotential the scalars are also conformally coupled so the full

action can again be rescaled to half of flat space. Up to a numerical factor, the contribution

to the photon self energy from the scalar loop is identical to the one of the fermions. In

fact this loop is proportional to the β−function of the theory. Since a complex scalar

contributes one half of a Weyl spinor in the β−function we find that the photon mass

is 3/2 of eq. (2.17). In terms of AdS4 representations (see [1]), since for vector fields

m2
1L

2 = E(E − 3) + 2 this corresponds to

D

(

2 +
g2(κ+ 2)

(4π)2
, 1

)

κ ≡ TrBQB∗Q∗ (3.2)

By imposing charge breaking boundary conditions the infrared contribution to gaug-

ino mass will not cancel exactly the anomaly mediated one, which is independent of the

boundary conditions. Repeating the same steps as in [5] one finds

mλ =
g2(k + 2)

(4π)2L
(3.3)

This corresponds to the AdS representation (m1/2L = E − 3/2),

D

(

3

2
+
g2(k + 2)

4π2
,
1

2

)

(3.4)

Recalling that a massive vector multiplet decomposes into the following representations

D

(

E0,
1

2

)

⊕D

(

E0 +
1

2
, 0

)

⊕D

(

E0 +
1

2
, 1

)

⊕D

(

E0 + 1,
1

2

)

, (3.5)

we conclude that the photon and gaugino acquire masses as demanded by supersymmetry

with E0 = 3
2 + g2(k+2)

4π2 . Notice that D(E0 + 1
2 , 0) and D(E0 + 1, 1

2) correspond to purely

two-particle states. In order to check the satisfaction of the algebra for these states we

would have to study the Källen-Lehmann decomposition of the current correlators. We

have not performed this additional computation.
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4 Discussion

The mass generation described in this paper presents some similarities with the Schwinger

model in 1+1 dimensions [10]. In that case, even before turning on any interaction, the

peculiar kinematics of 2D space-time implies the presence of a normalizable massless state

composed of a fermion and an anti-fermion. When the gauge coupling is turned on, the

vector field acquires a mass at 1-loop by ‘eating’ that massless bound state. In our set

up it is the kinematics of AdS4 that guarantees the presence of a normalizable massless

scalar state D(3, 0). Depending on the boundary conditions, when the gauge coupling is

turned on, the vector boson may eat the bound state and become massive. The technical

difference between the two cases lies in the fact that in the Schwinger model there is no

charge breaking scalar condensate made up of two fermion fields. This is due to Coleman’s

theorem [11] which establishes the absence of spontaneous symmetry breaking in 2D field

theory. In our 4D example, instead, massless (D(3, 0)) scalar fields have a moduli space of

expectation values, determined by boundary conditions. In this sense the mass generation

in AdS4 is qualitatively similar to technicolor theories where a condensate is responsible

for the breaking. However the distinction between the case with and without condensate

is just technical, since in gauge theories the only observable operators are gauge invariant

ones. From a gauge invariant viewpoint the story is the same in the two cases: starting

from a free theory with a massless elementary vector and a massless scalar ‘bound’ state,

a massive vector emerges when the interaction is turned on.

Finally we would like to comment on our results from the standpoint of the AdS/CFT

correspondence [12]. The phenomenon we have studied corresponds to turning on double-

trace (marginal) deformations in the dual CFT3 (see also [14] for related work). A (com-

plex) 4D Weyl fermion ψ quantized to give the D(E, 1
2 ) representation corresponds to a

(real) 3D fermionic operator Ψ of scaling dimension E. In particular for a massless 4D

fermion the dimension of Ψ is 3
2 . The scalar operator O = ΨΨ has dimension 3 (in the large

N limit) and represents a double trace marginal deformation. By simple OPE analysis (like

for instance done in ref. [13]) one is indeed convinced that λΨΨ is exactly marginal. This

generalizes to the case of a number n of fermions ψi (i = 1, . . . , n), corresponding to CFT3

operators Ψi. In that case the most general marginal deformation ∆LCFT = λijΨiΨj is as-

sociated to (n2+n)/2 real parameters. This precisely corresponds to the number of real free

parameters in the boundary matrix Bij on the AdS4 side, although to derive the mapping

between the two sets some work is needed [14]. When the AdS4 gauge group G ⊆ O(n), the

corresponding CFT3 can have global symmetry G. The most general marginal parameters

λij will in general break G to a subgroup H. Corresponding to the vector bosons getting

a 1-loop mass in the bulk, the CFT3 currents in G/H will acquire anomalous dimensions

of order α/4π ∼ 1/N2. The anomalous dimensions will also depend on the deformation

parameters and vanish continuously at the points of the λij space where G invariance is

restored. On the other hand, when G 6⊆ O(n), corresponding to a chiral gauge theory

in AdS, the dual CFT will be at best invariant under G′ = G ∩ O(n). In that case the

currents in G/G′ will acquire a non-zero O(1/N2) anomalous dimension over the entire

moduli space.

– 9 –



J
H
E
P
1
2
(
2
0
0
9
)
0
2
5

It is instructive to see in more detail how things work in the simple QED example,

sketching the dual picture of the discussion in subsection 2.1. The dual CFT contains two

fermionic operators that can be packaged into one complex field Ψ = Ψ1 + iΨ2, with charge

one under the global U(1) symmetry. The most general double-trace deformation is then

∆LCFT = λ1Ψ
∗Ψ +

(

λ2e
iθΨΨ + h.c.

)

(4.1)

again described by 3 real parameters (λ1, λ2, θ). The phase θ obviously has no physical

consequence, as it can be eliminated by a U(1) rotation. (This remark applies more gen-

erally to the previous discussion: the physically relevant λij are determined by modding

out by G.). We are left with two physical parameters λ1 and λ2. When [Ψ] = 3
2 these

parameters are exactly marginal. Of the two, λ2 explicitly breaks U(1) and must clearly

be consequential: the dual picture of our 4D computation is that the current acquires an

anomalous dimension. The parameter λ1 does not break any obvious symmetry of the CFT.

What happen here is clarified by the AdS4 picture. λ1 is basically associated to the φ1 +φ2

phase in eq. (2.19): as long as the bulk theory is invariant under the global chiral symmetry,

this phase can be eliminated and bulk physics remains the same. The CFT interpretation

of this phenomenon should be that when λ1 is turned on there exists a field redefinition

by which the deformed CFT is shown to be exactly equivalent to the original one. This

peculiarity should correspond to the 3D reflection of 4D global chiral symmetry [14]. Of

course one could conceive a 4D theory where, by tuning, the fermions are massless while

chirality is broken by other interactions, for example Yukawa or 4-fermion interactions. In

that situation λ1 would parameterize an inequivalent moduli space of CFTs. Finally, let

us consider the case where a bulk mass is turned on. At the charge preserving points, Ψ

has either dimension 3
2 +m or 3

2 −m. Consider indeed the second possibility. Eq. (4.1) is

now a relevant deformation. According to the 4D picture, this deformation makes the CFT

flow to discrete set of inequivalent fixed points. For λ1 6= 0 and λ2 = 0 electric charge is

conserved and the theory flows to the other possible charge preserving quantization the one

where there is a fermion operator Ψ′ of dimension 3
2 +m. Instead for λ1 = 0 and λ2 6= 0

the flow will lead to a new CFT where the current has a definite O(1/N2) anomalous

dimension.

Acknowledgments

We would like to thank Massimo Porrati, Vyacheslav Rychkov, Sergey Sibiryakov, Andrea

Wulzer and Alberto Zaffaroni for useful discussions. Special thanks to Massimo Porrati

for prompting us to finish this project. We acknowledge CERN for hospitality during the

final stages of this work. The work of R. R. is supported by the Swiss National Science

Foundation under contract No. 200021-116372.

References

[1] B. de Wit and I. Herger, Anti-de Sitter supersymmetry, Lect. Notes Phys. 541 (2000) 79

[hep-th/9908005] [SPIRES].

– 10 –

http://arxiv.org/abs/hep-th/9908005
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9908005


J
H
E
P
1
2
(
2
0
0
9
)
0
2
5

[2] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity,

Ann. Phys. 144 (1982) 249 [SPIRES].

[3] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking,

Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].

[4] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,

Princeton U.S.A. (1992).

[5] B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space,

JHEP 02 (2009) 043 [arXiv:0811.4504] [SPIRES].

[6] M. Porrati, Higgs phenomenon for 4−D gravity in anti de Sitter space, JHEP 04 (2002) 058

[hep-th/0112166] [SPIRES].

[7] B.A. Burrington and J.T. Liu, Supersymmetry and the AdS Higgs phenomenon,

JHEP 03 (2004) 059 [hep-th/0311205] [SPIRES].

[8] B. Allen and C.A. Lütken, Spinor two point functions in maximally symmetric spaces,

Commun. Math. Phys. 106 (1986) 201 [SPIRES].

[9] L. Randall and R. Sundrum, Out of this world supersymmetry breaking,

Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES];

G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets,

JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].

[10] J.S. Schwinger, Gauge Invariance and Mass. 2, Phys. Rev. 128 (1962) 2425 [SPIRES].

[11] S.R. Coleman, There are no Goldstone bosons in two-dimensions,

Commun. Math. Phys. 31 (1973) 259 [SPIRES].

[12] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

[13] E. Witten, Multi-trace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258 [SPIRES].

[14] M. Porrati and L. Girardello, The Three Dimensional Dual of 4D Chirality,

arXiv:0908.3487 [SPIRES].

– 11 –

http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA,144,249
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://arxiv.org/abs/hep-th/9905104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905104
http://dx.doi.org/10.1088/1126-6708/2009/02/043
http://arxiv.org/abs/0811.4504
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4504
http://dx.doi.org/10.1088/1126-6708/2002/04/058
http://arxiv.org/abs/hep-th/0112166
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0112166
http://dx.doi.org/10.1088/1126-6708/2004/03/059
http://arxiv.org/abs/hep-th/0311205
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311205
http://dx.doi.org/10.1007/BF01454972
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,106,201
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://arxiv.org/abs/hep-th/9810155
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9810155
http://dx.doi.org/10.1088/1126-6708/1998/12/027
http://arxiv.org/abs/hep-ph/9810442
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9810442
http://dx.doi.org/10.1103/PhysRev.128.2425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,128,2425
http://dx.doi.org/10.1007/BF01646487
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,31,259
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905111
http://arxiv.org/abs/hep-th/0112258
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0112258
http://arxiv.org/abs/0908.3487
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.3487

	Introduction
	Mass generation
	QED
	Chiral theories
	Bulk mass

	Supersymmetry
	Discussion

